• Introduction Of Machine Learnig (Advance)

    2 Days | 18 hrs

    Mathematics for Machine Learning
    1. Introduction to Calculus, Linear Algebra, Probability, Statistics and Random Variables
    2. Introduction to Python, numpy, pandas etc.
    3. Python assignments.

    Machine Learning Basics
    1. Fundamentals of Machine Learning
    2. Application in Machine Learning- Classification, Regression etc.
    3. Introduction to the theory and algorithms of :
    → Supervised Learning
    → Semi Supervised Learning
    → Unsupervised Learning
    → Graphical Models
    → Predictive Modelling

    Practical Machine Learning-Frameworks
    1. Machine Learning Frameworks :
    → Google COLAB
    → Sci-kit-learn
    → TensorFlow
    → PyTorch
    → Keras
    2. Industry grade tools and technologies for implementing a practical machine learning project
    3. Assignments – classification, regression and mathematical models

    Neural Network and Deep Learning
    1. Introdution to theory of neural networks and stochastic gradient descent
    2. Deep neural networks, CNN, RNN, Auto Encoders
    3. LSTM, GAN, Capsule networks

    Practical Machine Learning – Your own models
    1. Implementing a Neural Network from scratch
    2. Implementing a Deep Neural Network (CNN, RNN, GAN) in Tensorflow/PyTorch
    3. Developing AI projects and practical caveats in implementing machine learning models
    4. Organizing Machine Learning Projects

    Research and Applications
    1. Applications of AI in Industry and Academia
    2. Computer Vision
    3. Natural Language Processing
    4. What’s hot in AI research – a discussion on state of the art and recent trends in AI

    Apply Course
  • Introduction Of Machine Learnig (Basic)

    Day 1 | 8 hrs

    Mathematics for Machine Learning 
    1. Introduction to Calculus
    2. Introduction to Linear Algebra
    3. Introduction to Probability & Statistics

    Machine Learning Basics
    1. Fundamentals of Machine Learning
    2. Machine Learning Practical Applications: Classification, Regression etc.
    3. Supervised Learning
    4. Semi Supervised Learning
    5.Unsupervised Learning
    6. Neural Networks and Deep Learning

    Practical Machine Learning
    1. Machine Learning Frameworks : Python, Google COLAB, TensorFlow, Pytorch, Keras
    2. Code Classification and Time series Prediction Models
    3. Implementing a Neural Network from Scratch


    Apply Course
  • Deep Learning For Creating Digital Content

    2 hrs

    Learn character animation, transferring styles between images and videos, denoising images using neural networks.

    PREREQUISITES: Basic familiarity with deep learning concepts, such as CNNs and experience
    with Python.
    TOOLS AND FRAMEWORKS: TensorFlow, Torch .
    LANGUAGES: English
    DURATION: 2 hours

    Apply Course

  • Coarse-to-Fine Contextual Memory for Medical Imaging

     2 hrs

    Learn how to improve traditional architectures using coarse-to-fine context memory. Apply it to medical image segmentation and classification tasks.

    PREREQUISITES: Experience with CNNs and long short-term memory (LSTM)
    DURATION:2 hours

    Apply Course

  • Deep Learning for Intelligent Video Analytics

    2 hrs

    Learn to develop deep neural networks for object detection, localization and tracking.

    PREREQUISITES: Experience with deep networks (specifically variations of CNNs) and intermediate level experience with C++ and Python.
    LANGUAGES: English
    DURATION: 2 hours

    Apply Course
  • Applications of AI for Anomaly Detection

    2 hrs

    Learn to detect anomalies in large data sets to identify network intrusions using supervised and unsupervised machine learning techniques, such as accelerated XGBoost, autoencoders, and generative adversarial networks (GANs).
    PREREQUISITES: Experience with CNNs and Python
    LANGUAGES: English
    DURATION: 2 hours

    Apply Course
  • Clustering

    2 hrs

    Learn the theoretical foundations of clustering along with fundamental and advanced clustering methods such as distance based, iterative, hierarchical, continuous and categorical, density based methods. Dive into a deeper analysis with measures to analyze quality of clustering and its applications.
    PREREQUISITES: Basic machine learning and python.
    TOOLS AND FRAMEWORKS: Python, sci-kit learn, Tensor flow.
    LANGUAGES: English
    DURATION: 2 hours

    Apply Course
  • Deep Learning

    4 hrs

    PREREQUISITES:Neural Networks and python
    TOOLS AND FRAMEWORKS:Tensorflow, Keras, PyTorch
    DURATION:4 hours

    Apply Course
  • Deep Learning Network Optimization

    4 hrs

    PREREQUISITES: Neural Networks and python.
    TOOLS AND FRAMEWORKS: Tensorflow, Keras, PyTorch
    LANGUAGES: English
    DURATION: 4 hours

    Apply Course
  • Silverstone Hydrogon D120 ARGB CPU Air Cooler

    Brand: Silverstone

    Model: Hydrogon D120 ARGB

    Taipei, Taiwan, January 28th, 2021 – SilverStone Technology, an established leader in the PC component field, is excited to announce the availability of the new Hydrogon D120 ARGB CPU air cooler, providing new and improved cooling solution for PC and small form factor enthusiasts.

  • Instance & disk snapshots (manual and automatic)


    Point-in-time snapshots help back up the data on your Amazon Lightsail instances, managed databases, and block storage.

    GST @ 18% extra

  • Block Storage 8GB


    Scale your storage quickly and easily with highly available SSD-backed storage for your Linux or Windows virtual server. Block storage starts at 8 GB and costs 0.10 USD per allocated GB, per month.

    8 GB Storage

    GST @ 18% extra

  • Raspberry Pi Heat Sink


    Brand : Raspberry


    Passive Aluminium Heat Sink for Processor and Ram chip of all Raspberry Pi.

    Why Buy?

    Reduces the risk of hardware failure due to overheating
    > Low profile, will fit into most cases.
    > Simple, Passive cooling. No need for noisy fans.
    > Perfectly sized for the RPi’s CPU


    Size 13mm x 13mm x 6mm (H x W x D)
    > Thermal resistance of 27°C/W
    > Self adhesive thermal layer for easy application


  • Raspberry Pi Fan 3007/3010


    Brand : Raspberry


    Dimension: 30 x 30 x 10 mm
    Power supply: DC 5V
    Current: 0.1-0.2A
    It’s suitable for Raspberry Pi 3 Model B / 2B / B+
  • Raspberry Pi 3B Official Case


    Brand : Raspberry


    Official Case from the Raspberry Pi Foundation.

    Can be used for Raspberry Pi 3B and 3B+